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The quest for a three-dimensional theory of
ship—wave interactions

By J. N NEwWMAN

Department of Ocean Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, U.S.A.
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The radiation and diffraction of water waves by ships can be analysed in classical
terms from potential theory. The linearized formulation is well studied, but robust
numerical implementations have been achieved only in cases where the vessel is
stationary or oscillating about a fixed mean position. Slender-body approximations
have been used to rationalize and extend the strip theory of ship motions, providing
analytic solutions and guidance in the development of more general numerical
methods.

The governing equations are reviewed, with emphasis on the interactions between
the steady-state velocity field due to the ship’s forward translation and the
perturbations due to its unsteady motions in waves. Recent computations based on
the boundary-integral-equation method are described, and encouraging results are
noted. There is growing evidence that the influence of the steady-state velocity field
is important, and the degree of completeness required to account for the steady field
depends on the fullness of the ship. Benchmark computations are needed to test
theories and computer programs without the uncertainty inherent in experimental
comparisons.
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1. Introduction

The principal wave loads and their effect on ships can be described by inviscid
incompressible hydrodynamics, and hence by potential theory. (The notable
exception is rolling motion, where viscous damping is significant.) The underlying
boundary-value problem was known to Kelvin, Michell, Lamb and Havelock. A
logical corollary might be that this field is computationally mature, but such a
statement applies only in the limited context of small unsteady motions and no
substantial forward velocity of the ship.

The restriction to wave motions of small amplitude, and correspondingly small
motions of the vessel, is acceptable for most purposes despite the obvious nonlinear
features of ocean waves and severe ship motions. Indeed, linearization is the
foundation for spectral analysis, and thus for the useful synthesis of engineering
predictions based on experiments as well as theory. On the other hand, the restriction
to zero translational velocity, although appropriate for important special problems
involving offshore platforms, is unacceptable for most ship-motion predictions.

In the absence of a practical three-dimensional approach, the quasi two-
dimensional strip theory of ship motions has been used almost universally. This
theory is conceptually and computationally simple: the flow at each transverse
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214 Three-dimensional theory of ship—wave interactions

section of the ship is governed by a two-dimensional Laplace equation and by a free-
surface boundary condition which ignores convective acceleration. The strip theory
can be derived rationally only in the asymptotic limit of short wavelengths relative
to the ship length. Concerted efforts have been made to generalize this approach,
based on slender-body approximations. Current research work has shifted from this
more analytic objective to the development of numerical solutions of the three-
dimensional flow field.

Why is the three-dimensional problem so difficult to solve, and why has the
slender-body approach not been more fruitful ? Where do we stand today in attempts
to overcome the difficulties ?

2. Theoretical formulations

The cartesian coordinate system x is defined to translate with constant velocity U
in the + x-direction, and the ship oscillates about this moving reference frame. The
z-axis is positive upwards with the origin in the undisturbed plane of the free surface.
In most cases the unsteady motions of the ship, and corresponding velocity field of
the fluid, are assumed small relative to the basic steady state. In the perturbation
hierarchy any attempt to analyse these unsteady motions must be preceded by a
solution of the basic steady-state flow, i.e. the ‘wave-resistance problem’ where the
ship translates in otherwise calm water with constant velocity. In most cases
simplifying assumptions or ad hoc procedures are used to avoid this complication.

With the assumptions of an ideal fluid and irrotational flow, the fluid velocity in
the moving frame of reference is expressed as the gradient of the potential
Up(x)+q@(x,t) where U represents the steady base flow due to the ship’s forward
velocity and @(x,f) is the unsteady disturbance. Each potential is governed by
Laplace’s equation throughout the fluid domain. The important boundary conditions
are on the submerged part of the ship hull ‘body’ surface Sy and on the free surface
Sg. In addition a radiation condition must be imposed in the far field. These three
conditions are reviewed here, following the more detailed description in Newman
(1978).

(@) Boundary condition on the body

On Sy the normal component of the fluid and body velocities must be the same,
where the latter is assumed known in terms of the six modes of rigid-body motion
(surge, sway, heave; roll, pitch, yaw). If the amplitudes of these motions are
sufficiently small, linear superposition is justified and six canonical potentials ¢; can
be defined corresponding respectively to unit amplitudes of motion in each mode.
Each of these potentials satisfies an inhomogeneous Neumann boundary condition
on the instantaneous position of the body surface. These boundary conditions
distinguish the solutions of the ‘radiation problem’, where the fluid motion is forced
by the body oscillations.

Additional radiation modes can be defined to analyse the structural deflections of
the hull, which occur as a result of the wave field and associated ship motions. In
most cases these deflections are too small in amplitude to affect significantly the
rigid-body modes. Thus the ship motions can be analysed without consideration of
the structural deflections, which can be evaluated subsequently for the prescribed
motions. In special circumstances this coupling must be accounted for, requiring that
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J. N. Newman 215

the structural modes and impedance matrix be defined as a part of the motions
analysis.

Separately the ‘diffraction problem’ is defined, with a prescribed incident-wave
potential ¢, plus a scattered component ¢, caused by the body. The sum of these two
potentials satisfies the condition of zero normal velocity on the body in its mean
position. Alternatively, ¢,, = —@,, on Sy and the boundary-value problem for the
scattered potential is fundamentally similar to that of each radiation potential.

Subject to linear superposition, it is convenient to interpret the radiation and
diffraction problems in physical terms with separate forcing. Thus there are no
incident waves in the radiation problem, and no body motions in the diffraction
problem.

To develop a consistent perturbation solution in the coordinate system x it is
necessary to transfer the boundary condition from the instantaneous position of the
body to its mean position. Following Timman & Newman (1962), with the notation
introduced by Ogilvie & Tuck (1969), the result is

P = iom;+ Umy, (1)

where the unsteady motion is assumed periodic with time dependence e’ and n,
denotes the jth component of the unit normal vector for the translational modes
( = 1,2,3) or the vector (x xn) for the rotational modes (j = 4,5,6). (Subscripts
other than the index j denote partial differentiation.) The extra terms with factors
(my, my, my) = —(n-V) Wand (my, mg, mg) = — (n-V) (x x W) are due to the oscillatory
motion of the body within the steady velocity field W = uVg.

The so-called ‘m-terms’ in this boundary condition present special computational
difficulties since second-derivatives of ¢ are involved (Zhao & Faltinsen 1989). In
strip theory, and in simplified three-dimensional computations, the assumption is
made that W ~ — Ui. In this case the only non-vanishing contributions are from the
‘angle-of-attack’ terms in (mg, ms), as in equation (2) below. For non-slender ships it
is necessary to account for the steady disturbance, particularly near the bow and
stern. The simplest approach is to use the ‘double-body’ solution for W
corresponding to the zero-Froude-number limit of the steady problem where the free
surface is a fixed horizontal plane. Even with this approximation careful numerical
analysis is required to evaluate the m-terms.

Unlike the radiation problem, the forward velocity U does not affect the body
boundary condition in the diffraction problem.

(b) Boundary condition on the free surface

If the unsteady potential ¢ is considered to be a perturbation of an arbitrary
steady velocity field W the resulting linear boundary condition for ¢ on the free
surface Sy contains variable coefficients, and must be applied on the exact steady free
surface. To simplify this situation it is necessary to approximate W. Various special
cases are discussed below, in order of increasing complexity.

The simplest case is where W = 0. The linearized unsteady potential then satisfies
the classical free-surface condition ¢, +g@, = 0 on the plane z = 0. In the frequency
domain the simpler mixed condition w?p—ggp, = 0 applies. If U = 0 this boundary
condition is easily justified. The same boundary condition has been used in an ad hoc
manner in strip theory; some justification follows from slender-body theory, where
this condition applies in the inner domain near the body. An important consequence
of the simple ‘zero-speed’ free surface condition is that analytic solutions for the

Phil. Trans. R. Soc. Lond. A (1991) i
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216 Three-dimensional theory of ship—wave interactions

Green function exist which satisfy this boundary condition, and can be used to
construct both analytic and numerical solutions (see Wehausen & Laitone 1960, §13;
Newman 1990). In addition to forming a useful computational basis for vessels
without forward velocity, this limiting case also has been used to develop a two-term
perturbation analysis in powers of U which takes advantage of the simpler U = 0
Green function (Huijsmans & Hermans 1985; Hu & Eatock Taylor 1989; Nossen et
al. 1989).

If W~ — Ui, the linear free-surface boundary condition is generalized by replacing
the operator 0%/0t? by (0/0t — Ud/dx)?. This is appropriate if the ship is thin or slender,
and more generally in the far field where three-dimensional attenuation reduces the
magnitude of the ship’s disturbance. A closed-form Green function can be used which
satisfies this boundary condition either in the frequency domain (Wehausen &
Laitone 1960, eq. 13.52), or in the time domain by an appropriate transformation of
the transient Green function.

For non-slender ships it is necessary to account for the steady disturbance, and the
situation is analogous to that of the boundary condition on Sg. The possibilities
range from using the double-body solution for W, or a linear solution of the steady
free-surface problem with Kelvin waves, to the most general case where the steady
flow is nonlinear. The free-surface condition for ¢ contains variable coefficients, and
the analytic properties of the free-surface Green functions are of little help except in
the far field.

(¢) The radiation condition

In the frequency domain an appropriate radiation condition must be imposed in
the far field, corresponding in the time domain to the requirement that the ship’s
disturbance should start from an initial state of rest. If U = 0 the radiation condition
is equivalent to the simple requirement of outgoing circular waves at infinity. If
U # 0 the far-field description is more complicated (Wehausen & Laitone 1960,
fig. 3).

If the appropriate analytical form of the Green function is used, satisfying the
linearized free-surface condition, the radiation condition is satisfied automatically by
defining a suitable contour of integration. In strip theory the three-dimensional
radiation condition is replaced by a conventional outgoing plane wave in two
dimensions ; this ad hoc substitution is justified only in the asymptotic sense for high
frequencies. A more general ‘unified’ slender-body analysis (Newman 1978;
Sclavounos 1984) reveals that a partial standing wave is appropriate in the matching
domain, contrary to the more intuitive radiation condition of strip theory.

(d) Numerical solution of the boundary-value problem

Green’s theorem can be used to reduce the unknown three-dimensional velocity
potential to the solution of a two-dimensional integral equation on the boundary
surface(s). Discretization of the boundary geometry and of the unknown solution
yields a system of linear algebraic equations which can be solved numerically. For
external flow problems this approach is particularly efficient if a suitable Green
function can be used which reduces the computational domain to a single finite
boundary surface, in this case Sy. Typically the boundary surface is approximated
by a large number N of ‘panels’ or ‘facets’, with the same number of unknowns and
equations based on collocation of the boundary conditions at each panel. The
computations require N?* evaluations of the coefficient matrix, in terms of the Green

Phil. Trans. R. Soc. Lond. A (1991)
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J. N. Newman 217

function and its derivatives, and subsequently the solution of the NxN linear
system. In practice N = O(1000) and substantial computational costs are associated
with both the set-up and solution. Iterative solutions are practically essential for
larger values of N.

This computational approach, often known as the ‘boundary-integral-equation’ or
‘panel’ method, has been applied to a variety of problems in inviscid fluid mechanics
(Hess 1990). Alternative methods exist based on a finite-element or finite-difference
representation of the fluid volume, but appear to be less effective due to the large
computational domains required to describe external flows.

(e) Wave loads and motions

Once the velocity potential is known it is straightforward in principle to evaluate
the pressure and integrate over the hull surface for the total force, moment, and
structural loads. In practice the steady velocity field W introduces additional
interactions at this stage, both in terms of products of the steady and unsteady
velocities which must be accounted for in Bernoulli’s equation, and transfer of the
prossure between the instantaneous and mean positions of the hull surface.

In the frequency domain it is customary to express the components of the force in
phase with the acceleration and velocity as the added mass and damping coefficients,
respectively. As a consequence of the ship’s unsteady motion within the steady
velocity field there also exists an oscillatory restoring force in phase with the motions
themselves, which augments the usual hydrostatic restoring force. This ‘hydro-
dynamic restoring force’ depends only on the Froude number. It is frequently
overlooked or considered in experimental data to be a part of the added mass. The
steady-state ‘sinkage and trim’ result from balancing the hydrodynamic and
hydrostatic components of the restoring force and moment.

3. A simplified theory

A relatively simple three-dimensional analysis can be developed by combining
slender-body approximations of the forward-speed effects with the numerical
solution for U = 0. The result has some features of the strip theory, but with a three-
dimensional solution of the velocity potential and pressure on the hull. The principal
approximations are (1) to include only the free-stream velocity — Ui in the m-terms
of the body boundary condition, and (2) to neglect the steady velocity field
completely in the free-surface condition. The first assumption can be justified if the
ship hull is slender. Since the second assumption is ad hoc we postpone its use until
the end of the analysis.

Consider the oscillatory heave (£;) and pitch (£;) motions of a slender ship, where
the corresponding potentials satisfy the body boundary conditions

Pan = 10Ny, @5, = (—iwx+U)n,. (2)
Here the approximation ny & an, is used, based upon the assumption of slenderness.
Denoting the solutions of (2) with U = 0 by a superscript (°), it follows that

Ps =0, @5 = +(U/io) ¢y, (3)
Next we consider the differential vertical force F’(x) acting upon the ship at the same
station, where its surface intersects the plane of constant x in the contour X(x, ).
Phil. Trans. R. Soc. Lond. A (1991)
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218 Three-dimensional theory of ship—wave interactions

From a momentum analysis which accounts for the movement of this contour
(Newman 1977, eq. 102),

Fx —p(——U )J ¢y dl, (4)

where ¢ is the total perturbation potential due to the ship including the steady
component but not the free stream, and the approximation neglects quadratic terms
of order (¢).

The oscillatory component of F’ includes a contribution from the interaction
between the steady pressure field and the time dependence of 2, as discussed at the
end of §2. The remaining unsteady component of }” can be calculated directly from
@. Using (3), integrating over the length, and defining the integrals

Fjo = pot [[ggas, a9 = pot [[ (=g nas, 8

it follows that the total vertical force F' and pitch moment M acting on the ship are
given in the forms

F =g FY+E(FP+(Ulio) F), (6)
1 = g1 - 9 ), (010 + Lo p9 0 - 210). )

Here integration by parts has been used in the longitudinal direction, and there are
extra contributions from the ship’s stern if it is not pointed. The contribution from
the last pair of terms in (7) vanishes, if the cross-coupling coefficients are symmetric.

In the diffraction problem the unsteady potential includes the incident wave ¢,
and the scattered component ¢,. The Froude—Krylov force, due to ¢,, depends on the
wavenumber and hence on the incident-wave frequency o, in a fixed frame of
reference. This component of the force is not dependent on U. Turning to the
scattered component, the body-boundary condition ¢,, = —¢,, is independent of U
and thus, in the notation used for the radiation solutions, @, = @{?. The differential
scattering force can be derived from momentum conservation in the same manner as

(4). The result is
F;z—p(iw—U%>J PO nydl, (8)

where 2 denotes the mean position of the ship cross section. Integrating along the
length of the ship, it follows that

F,=F®, M,=MP = (U/iw) F, 9)

where the definitions (5) are extended to apply with j = 7.

Structural loads can be determined directly from /', or by defining suitable higher-
order mode shapes and integrating over the length of the ship.

The advantage of these expressions is that the effects of forward velocity in the
body boundary condition and in the momentum integral for the differential force are
accounted for explicitly, in terms of canonical potentials @{” which satisfy the
simpler body boundary condition for U = 0. The only other role of the forward
velocity is its implicit influence on these potentials via the free-surface boundary

Phil. Trans. R. Soc. Lond. A (1991) ) )
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condition. A similar analysis by Salvesen et al. (1970), uses a variant of Stokes’s
theorem and direct pressure integration instead of the momentum relations (4) and
(8). Salvesen et al. proceed from this point to invoke two-dimensional approximations
for the components of the velocity potential, leading to a version of strip theory
which has been used widely.

Following Inglis & Price (1980), one can avoid the two-dimensional strip-theory
assumption and use instead the velocity potentials corresponding to the three-
dimensional boundary-value problem with U =0 in the free-surface boundary
condition. The force and moment F{”, M{” then can be evaluated from a three-
dimensional panel code of the type generally associated with the analysis of offshore
structures without forward velocity. If the scattering potential is considered in the
same manner, the resulting solution for ¢{” depends on both w, (via the body
boundary condition) and w (via the free-surface condition), but not otherwise on U.
In this circumstance @, and @, satisfy different free-surface boundary conditions.

4. More complete numerical solutions

For computations where the free-surface boundary condition includes forward-
speed effects, two distinct variants of the panel method have been used. These are
discussed separately in the following sections.

(@) Newmann—Kelvin approaches

If the free-surface condition is linearized about a constant steady streaming flow
W = — Ui (including the particularly simple special case where U = 0), the ‘free-
surface Green functions’ defined in §26 can be used. Under these circumstances the
computational domain is reduced to the surface of the ship hull, augmented in
general by a line integral at the intersection of this surface with the plane of the

_undisturbed free surface. Thus the computational domain is minimized, at the
expense of a more complicated Green function. Special algorithms and subroutines
are desirable to ensure rapid and robust evaluation of the Green function, but
progress in this direction is limited for the case where U > 0 (cf. Ohkusu & Iwashita
1989). An essential singularity occurs when the source and field point are in the free
surface, and no appropriate algorithms exist which properly account for this
singularity in panel methods.

Most existing works use ad hoc numerical integration to evaluate the Green
function for U > 0, masking the singularity. Numerical results have been reported by
Chang (1977), Inglis & Price (1982) and Guevel & Bougis (1982). Inglis & Price
include the factors m; in the hull boundary condition, and show a variety of results
with varying degrees of correction for the forward velocity. In the most complete
version a significant discrepancy exists in the vertical force distribution near the
stern, and the authors suggest that viscous effects are responsible. Despite their
impressive computational accomplishments, little practical implementation has
followed from these works. Further progress may follow from the development of
special algorithms for the Green function, but this is a substantially more complicated
task in the case U > 0 and the essential singularity is an uncertain source of errors.

These difficulties can be circumvented by using a time-domain analysis, with the
unsteady motions started from an initial state of rest. The corresponding Green
function is equivalent to an impulsive point source at an arbitrary point in space. As
time advances the steady forward velocity is represented by advancing the source

Phil. Trans. R. Soc. Lond. A (1991)
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220 Three-dimensional theory of ship—wave interactions

points in the same manner used by Kelvin to analyse steady ship waves. For finite
values of time the essential singularity does not exist, although in principle waves of
monotonically decreasing wavelength will arise as time increases. The integral
equation for the potential is solved at each time step by convolution of the solution
for all previous times. To avoid redundant evaluations all of the previously computed
values of the Green function must be stored. This requires substantial scratch
memory (of order equal to the product of the time steps in the convolution and the
square of the number of panels on the body). Extensive results are reported by (King
et al. 1988) for a variety of mathematical and practical ship hulls; this work does not
account for the ship’s steady disturbance in evaluating the m-factors. In more recent
work Beck & Magee (1990) discuss various numerical details, and compare the results
using the undisturbed free stream against the double-body flow to evaluate the m-
factors.

In the so-called ‘body-nonlinear’ time-domain analysis the linear free-surface
condition and corresponding Green function are utilized, but the body boundary
condition is satisfied on the exact surface Sy at each time step. This approach
obviates the need to consider the troublesome m-factors, and the ship’s motion may
be prescribed arbitrarily, in principle. Lin & Yue (1990) have demonstrated
significant progress with this approach, including geometry variations as the hull
moves vertically in relation to the plane of the free surface. Since the geometry is
non-stationary it is necessary to recalculate the values of the Green function (and
its derivatives) at each time step, for all previous times required in the convolution
integrals. For this approach to be feasible it is imperative to utilize fast algorithms
for the Green function.

(b) Rankine approaches

Here the simpler ‘Rankine’ Green function 1/r is used, where r denotes the
distance between the source and field points. In this case the free surface must be
included in the computational domain of the integral equation, and radiation
conditions in the far field must be considered explicitly. Advantages of this approach
are (a) that the Green function is relatively simple to evaluate, and (b) that a variety
of linear and nonlinear free-surface boundary conditions can be accommodated. This
method was used originally by Gadd (1976) and Dawson (1977) for the computation
of the steady wave-resistance problem, and has been developed extensively in that
context. Recently the same method has been applied to the diffraction of incident
waves by a moving submerged vessel by Bertram (1990), accounting for the ‘exact’
nonlinear steady flow field, and to the complete ship-motions problem by Nakos &
Sclavounos (1990).

Nakos & Sclavounos consider only the double-body solution of the steady state,
which is correct in the limit of zero forward velocity. Since the double-body flow also
is trivially exact in the limit of zero body slenderness, their linearization about this
state is considered to be consistent with both slow-ship and slender-ship
approximations. The results are compared with the solution when only the steady
uniform stream is accounted for, as in the Neumann—Kelvin problem, and substantial
differences are shown for the cross-coupling coefficients. Most of this difference is
associated with the body boundary condition, as compared with free-surface
condition. Special efforts are made to develop a numerically consistent and robust
algorithm for the free-surface discretization, with bi-quadratic B-splines used as the
basis function for the unknown potential on each panel; this permits analytic

Phil. Trans. R. Soc. Lond. A (1991) )
[ 34 ]


http://rsta.royalsocietypublishing.org/

/,//’ \\
o \
( 2\

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\
/%

p

THE ROYAL A

a

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

J. N. Newman 221

T | 1 0 | | |
2 4 6 2 4
wV(L/g) wv/I(L/fg)
Figure 1. Added mass (a,) and damping (b,) coefficients for the Wigley hull in heave (j = 3) and
pitch (j =5). o, Experiments; ———, three-dimensional approximate; « - - , strip theory; —,

Nakos & Sclavounos. a; = a,,/pV; ay = a5, /pVL?; ) = (byy/pV) v/ (L/9); By = (bss/pVL?) V/ (L/g).

differentiation to be applied in the free-surface condition. The resulting solution is
shown to be free of numerical damping, and numerical dispersion is controlled by
suitably restricting the Froude number based on panel dimensions. A simple
upstream radiation condition is invoked which limits the solution to moderate or
large Froude numbers. The influence of the m-factors is computed by a variant of
Stokes’s theorem to avoid evaluating derivatives of the steady velocity field.
Convergence with increasing numbers of panels is demonstrated, and satisfactory
accuracy is obtained with 0(2000) total panels on the ship and free surface.
Encouraging experimental comparisons are shown for the Series 60 (Cz = 0.7) hull at
the Froude number Fn = 0.2, and for the modified Wigley hull at the Fn = 0.3.
Selected results are reproduced in the following section.

5. Examples of numerical results

Special experiments have been conducted by Gerritsma (1988) with a math-
ematically defined ‘Wigley hull’ to provide a reliable basis for comparing theoretical
results. This hull is defined by two-dimensional polynomials permitting accurate
discretization and analysis by panel methods and other numerical techniques.

The resuits in figures 1-3 show comparisons of the experimental data with three
theories. In order of increasing complexity these are (1) strip theory, (2) the
simplified theory described in §3, where the same forward-speed corrections are used
as in strip theory but the potentials are evaluated from a three-dimensional panel

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 2. Cross-coupling coefficients between heave and pitch for the Wigley hull (see figure 1
for symbols). oy = a35/pVLs; oy = a55/pVL; B3 = (bys/pVL) X/ (L/g); B3 = (b53/pVL) v/ (L/g).
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Figure 3. Non-dimensional heave and pitch motions of the Wigley hull in waves of
amplitude 4 and wavelength A (see figure 1 for symbols).

code, and (3) the more complete analysis of Nakos & Sclavounos described in §4. The
agreement between the latter theory and the experimental data is substantially
better than most previous work in this field.

For this relatively slender hull the differences between the strip theory and
simplified three-dimensional theory are minor. Other results (not shown) for the
Series 60 hull at a Froude number of 0.2 indicate somewhat better predictions from
the simplified three-dimensional results compared with strip theory, but for both
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ships the theory of Nakos & Sclavounos clearly is superior. The most important
differences appear in the cross-coupling coefficients (figure 2), where the slender-body
forward-speed corrections in (6)—(7) appear to be exaggerated for the added mass and
do not properly account for the frequency variation of the damping coefficients. In
fact, if the forward-speed corrections are deleted completely there is no significant
effect for the coefficients in figure 1, while for the cross-coupling coefficients in figure
2 the damping is worse but the added mass is improved! On this basis one must
question the practical value of the slender-body forward-speed corrections, which
have been so widely used in strip theories.

6. Conclusions

Vital connections exist between the three-dimensional description of unsteady
ship motions and the theory of steady-state wave resistance. The later is a special
case of the more general unsteady problem, but from the perturbation standpoint the
steady problem must be solved first, and with more concern regarding nonlinear
effects.

Similar analytical and computational methods have been applied to both the
steady and unsteady problems. These include the thin-ship approach first advocated
for the steady problem by J. H. Michell in 1898. (The unfulfilled promise of an
unsteady sequel, noted by Michell in the closing of his famous paper is a
disappointment to admirers of his work.) In the past 30 years parallel analytical
developments have been applied to both the steady and unsteady problems based on
slender-body theory and other geometric approximations. Parallel numerical
solutions have been based on discretized boundary integral equations using both
Rankine and free-surface Green functions.

Motivated by the commonality of these two problems, Faltinsen (1990) aptly
states that ‘To make further improvements in ship motion predictions at moderate
and high Froude number it is felt that one first has to study the steady wave
potential problem in more detail.’

On the other hand, some aspects of the steady and unsteady problems are
different. The unsteady motions and structural loads in waves result primarily from
the components of the pressure force acting on the hull perpendicular to its long axis,
whereas the axial pressure force associated with the steady wave resistance is
relatively small and thus difficult to evaluate with the same relative precision. Thus
the low-Froude-number double-body approximation for ¢ may be sufficiently
accurate to describe the interaction between the steady and unsteady problems,
despite the fact that the corresponding value of the wave resistance is zero. The
results of Nakos & Sclavounos support this conjecture, for Froude numbers in the
range 0.2-0.3. For high-speed vessels a more comprehensive solution of the steady
velocity field may be required, or it may be practical to use a high-Froude-number
approximation along the lines described by Zhao & Faltinsen (1990).

An unfortunate aspect of both the steady and unsteady problems is the absence of
appropriate benchmarks with which to compare theoretical and numerical solutions.
Experiments provide the only guidance in this respect, requiring judgements
concerning the effects of viscosity and other practical considerations which should be
addressed separately from the numerical implementation of the theory. If current
research leads to such benchmarks in the near future, we can look forward to greater
progress in this field.
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Discussion

W. C. WEBSTER (University of California, Berkeley, U.S.A.). The six rigid-body
motions can be decomposed into four parts, each with a distinct character. These are:
(1) pitch and heave, (2) surge, (3) sway and yaw and (4) roll. Pitch and heave are most
often used in the comparison with various theories, as Professor Newman does in his
paper. Whereas it is clear that one can be somewhat optimistic about the ability to
predict these two motions accurately within a decade, the situation with the other
motions is unclear. What is the prognosis for the three sets of ‘forgotten’ motions ?

J. N. NEwMAN. Professor Webster refers to the ‘forgotten’ modes of ship motions.
Roll is distinet from pitch and heave in respect to the timescale of resonance, degree
of nonlinearity, and role of viscous damping. Surge, sway and yaw may be more
amenable to theoretical descriptions, but the lack of hydrostatic restoration suggests
the importance of low-frequency hydrodynamic effects and the treatment of the ship
as a slender lifting surface. These motions have special relevance to aspects of safety
such as broaching in quartering seas or capsizing in beam seas, and less importance
in estimating structural loads.

G. X. Wu (University College London, U.K.). When 7 < 0.25 there are waves in front
of the ship. The radiation condition assuming there is no wave in front of the ship
has to be assessed. When the finite-element method was introduced to ship
hydrodynamics in the early 1970s, the radiation condition was imposed on the
boundary of localized finite elements. This was found extremely inefficient, and the
coupled method was later developed. How far does the free surface have to go before
the radiation condition can be imposed ?

J. N. NEwmaN. Responding to the computational issues raised by Dr Wu, although
the radiation condition of Nakos & Sclavounos is well founded only for 7 = wU/g > 1,
their results indicate ad hoc validity for smaller values of this parameter, for small
values of the frequency but not for small values of the Froude number. The singular
region near 7 = i is more problematic. The upstream limit of their computational
domain is one-quarter of the ship length ahead of the bow.

A. E. My~EeTrT. (Delft Hydraulics, The Netherlands). Regarding the accuracy of input
wave data in relation to ship motion characteristics, it is important to distinguish
between ship operations and ship design. For ship operations, knowledge of the
actual ocean wave conditions is of great importance. At present, however, the
accuracy of the ocean wave parameters is usually less than the accuracy of the ship’s
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characteristics. On the other hand, for ship design, the emphasis is very often on
intercomparison of various alternatives, keeping the input parameters fixed. Clearly,
in this case the variability in the wave conditions is of less concern and the accuracy
of determining the ship motion characteristics becomes of significance, indeed.

J.N. NEwman. The discussants underscore many of the gaps between the
mathematical description of linearized ship motions in an idealized wave environ-
ment and the ultimate description of wave-induced structural loads in an actual
seaway of imprecise specification. The latter uncertainty is emphasized by Dr
Mynett.

D. FAuLk~NER. It seems that when structural analysts use linear strip theory for
predicting ship vertical bending moments, from which for example short-term or
long-term stresses are derived, that the theory consistently over-predicts these
moments. Yet the same strip theory used to predict vertical plane ship motions of
heave and pitch seems more often than not to slightly under-predict motions when
compared with measured values in model tests and inferred from full-scale trials.

On the surface this would seem to present a paradox and I wonder why this is?
Nonlinear effects such as different sag and hog buoyancy should presumably affect
pitch motions, for example, as well as bending moments. Nonlinear buoyancy may
not affect motions so directly as they do bending moments, but this still would not
explain why motions are generally under-predicted whereas vertical bending seems
to be consistently over-predicted. It is my understanding that the consistency of this
over-prediction is actually made use of by a bias factor when choosing acceptable
safety levels for RN frigate design.

J. N. NEwman. Professor Faulkner notes the opposing errors of strip-theory
predictions in the contexts of ship motions and of wave-induced structural loads.
Most work on three-dimensional methods has concentrated on illustrative com-
putations of the motions, and underlying force coefficients, as opposed to the
structural loads. There is much evidence of the shortcomings of strip theory in the
latter context, and more should be done to apply current three-dimensional
computations to structural loads. The results will shed considerable light on the
question of whether the overpredictions cited by Professor Faulkner are due to three-
dimensional effects or nonlinearities.

G. Victory (Surrey, U.K.) After two very good photographs of a warship in rough
weather, Professor Newman removed the effects of the very important part which
such rough weather plays in ship—wave interactions in developing his theory. I have
great difficulty in accepting that one can take away the effects of slamming, wave
impacts on the structure or the flexing and severe vibrations in the structure caused
by the interaction of ship and random wave impacts, and yet produce an acceptable
theory which can be used in designing adequate strength into the ship.

J. N. NEwMmAN. Experimental evidence supports the linear analysis of ship motions,
at least in head seas, despite the obvious nonlinear features of extreme conditions. A
rational explanation is that the ship’s dynamics are dominated by its very large
mass, and thus it acts as a low-pass filter to suppress the effects of short-time high-
frequency excitation. This is not to say that local effects of slamming, entrained
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water on deck, and structural deflections are insignificant, but only that these can be
separated from the global description of the motions. More ‘realistic’ alternatives for
engineering assessment such as full-scale observations, experiments, or nonlinear
computations, all present complementary insight, but not without their own
limitations.
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